An Introduction to Formal Logic

An Introduction to Formal Logic

资源信息 | Information

MP4 |视频:856x480 |音频:AAC,48Khz,2ch |持续时间:12小时26分钟|语言:英语| 7.2 GB

到处都有缺陷,误导和虚假的争论。从试图将您与您的钱分开的广告客户,以及试图影响您投票的政客,以及希望您同意他们的朋友,您的信仰结构不断受到攻击。

逻辑是对这种理性攻击的智能自卫,也是一种质量控制方法,用于检查自己观点的有效性。但除了这些非常实际的好处之外,非正式逻辑 - 我们在日常生活中应用的那种 - 是通向一种优雅而迷人的哲学分支的门户,称为形式逻辑,即哲学等同于微积分。形式逻辑是一种令人惊叹的多功能工具。就像瑞士军刀的精湛思想一样,它是一种强有力的探究模式,可以带来惊人的,改变世界观的结论。

屡获殊荣的葛底斯堡学院哲学教授史蒂文·吉姆贝尔通过“形式逻辑导论”中的这一极其有益的主题,引导您充满机智和魅力,24个半小时的讲座,从头开始教您逻辑 - 从日常思维的谬论,以及对该学科前沿的尖端思想。 Gimbel教授的研究探索了科学推理的本质以及科学与文化相互作用的方式,这使他完美地将先进的抽象概念清晰而具体地定位。

这个课程充满了现实世界的例子和发人深省的练习,适合从初学者到资深逻辑学家的每个人。丰富的屏幕图形,以及丰富的符号和样张解释,使概念清晰。

对于我们所有人的逻辑师

你会发现,同样的理性技能可以帮助你发现销售宣传中的弱点,或者你孩子逃避家庭作业的借口也会让你走上我们时代最深刻的发现之路,比如KurtGödel的不完备性定理,它震撼了20世纪哲学和数学的基础,只能与量子力学等思想革命相提并论。但哥德尔并不需要一个实验室来制作他的发现逻辑。

具有惊人广度和深度应用的课程,形式逻辑简介将吸引:

渴望做出更好决策的批判性思考者,无论是医生,律师,投资者,经理还是其他人都面临着权衡相互冲突的选择的任务

思想史爱好者,他们希望追溯从古代到现在最具影响力和未被充分认识的思潮之一

哲学的学生,逻辑是评估哲学论证的金标准,也是掌握学科的必修课程

数学专业的学生,他们想要了解他们领域的基础,并瞥见驱动每一个数学等式的机器

任何人都对计算机如何工作感到好奇,因为程序对单词,句子甚至数字都一无所知 - 他们只能理解逻辑

那些着迷于语言,大脑和认知科学中的其他主题的人,因为逻辑模型比任何其他工具更好地模拟语法,意义和思想

逻辑是你的盟友

吉姆贝尔教授首先指出人类接受错误的信仰。例如,我们强烈要求改变我们的观点以匹配群体的观点,特别是如果我们是唯一的坚持 - 即使我们确信我们是对的。从这些和其他认知偏见的情况来看,我们的本能与声音推理相反,你开始看到逻辑如何是一种保护我们脱离自己的奇妙修正。有了这个有趣的开始,Formal Logic简介展开如下:

逻辑概念:介绍演绎和归纳论证以及用于评估它们的标准 - 有效性和良好基础。然后你会发现论证有两个部分:结论(正在争论的结论)和前提(给出结论的支持)。

非正式逻辑:通常称为批判性思维,这种类型的逻辑分析着眼于除了论证形式之外的其他特征 - 因此是“非正式的”。在这里,你专注于建立前提的真实性,以及发现标准的修辞技巧和逻辑谬误。

归纳推理:接下来,您将学习使用归纳法评估论证的有效性,该归纳法检查不同的案例,然后形成一般性结论。归纳论证是典型的科学,采用我们已经知道的东西并给予我们逻辑许可以相信新的东西。
正式的象征性演绎逻辑:被称为“正式”逻辑,因为它侧重于论证的形式,这一系列技术使用符号语言来评估各种演绎论证的有效性,这些论证从一般法律或原则中推断出细节。

模态逻辑:经过对形式逻辑的深入探索,你冒险进入模态逻辑,学会处理处理可能性和必要性的句子 - 称为模态。模态逻辑在道德哲学中非常有影响力。

目前的进展:你通过观察最近的发展来结束课程,例如三值逻辑系统和模糊逻辑,它们通过否定所有逻辑的基础来扩展我们的推理能力 - 句子必须是真或假。

学习逻辑语言

对于许多人来说,形式逻辑最令人生畏的方面之一是它使用符号。您可能已经看到用这些箭头表示的逻辑论证,v,向后E,倒置A和其他不可思议的符号,这些符号可能看起来像高等数学或古老语言一样令人困惑。但是形式逻辑简介表明,这些符号可以紧凑地传达简单的思想,并成为使用的第二天性。在案例之后,Gimbel教授解释了如何将英语中含糊不清的句子分析为符号表示的组成命题。这使得所声称的内容透明清晰。

考虑这两句话:(1)“狗是男人最好的朋友。”(2)“狗在前院。”最初,它们看起来非常相似。两人都说“狗是x”,似乎只有狗的属性不同。然而,在这两种情况下,名词短语“狗”意味着两种完全不同的东西。首先,它意味着一般的狗。在第二个中,它表示特定的狗。这些对比鲜明的想法象征着如下:

1.“x(Dx→Bx)

2. $ x(Dx和Fx)

你会发现日常生活中的许多相关论证都取决于类似的模糊性,当它被翻译成清晰的逻辑语言时就会消失。

金贝尔教授指出,逻辑思维就像骑自行车;它需要技巧和练习,一旦你学会了你真的可以去的地方!逻辑是哲学,数学和科学的关键。没有它,就没有电子计算机或数据处理。在社会科学中,它识别行为模式并揭示社会盲点 - 我们所做的假设都是完全错误的。逻辑可以帮助您赢得争论,举行会议,起草合同,抚养孩子,成为陪审员,或者买一件衬衫,并避免在赌场丢失。逻辑说你应该学习这门课程。


MP4 | Video: 856x480 | Audio: AAC, 48Khz, 2ch | Duration: 12h 26 min | Language: English | 7.2 GB

Flawed, misleading, and false arguments are everywhere. From advertisers trying to separate you from your money, to politicians trying to sway your vote, to friends who want you to agree with them, your belief structure is constantly under attack.

Logic is intellectual self-defense against such assaults on reason and also a method of quality control for checking the validity of your own views. But beyond these very practical benefits, informal logic—the kind we apply in daily life—is the gateway to an elegant and fascinating branch of philosophy known as formal logic, which is philosophy’s equivalent to calculus. Formal logic is a breathtakingly versatile tool. Much like a Swiss army knife for the incisive mind, it is a powerful mode of inquiry that can lead to surprising and worldview-shifting conclusions.

Award-winning Professor of Philosophy Steven Gimbel of Gettysburg College guides you with wit and charm through the full scope of this immensely rewarding subject in An Introduction to Formal Logic, 24 engaging half-hour lectures that teach you logic from the ground up—from the fallacies of everyday thinking to cutting edge ideas on the frontiers of the discipline. Professor Gimbel’s research explores the nature of scientific reasoning and the ways in which science and culture interact, which positions him perfectly to make advanced abstract concepts clear and concrete.

Packed with real-world examples and thought-provoking exercises, this course is suitable for everyone from beginners to veteran logicians. Plentiful on-screen graphics, together with abundant explanations of symbols and proofs, make the concepts crystal clear.

For the Logician in All of Us

You will find that the same rational skills that help you spot the weaknesses in a sales pitch or your child’s excuse for skipping homework will also put you on the road to some of the most profound discoveries of our times, such as Kurt Gödel’s incompleteness theorems, which shook the foundations of philosophy and mathematics in the 20th century and can only be compared to revolutions in thought such as quantum mechanics. But Gödel didn’t need a lab to make his discovery—only logic.

A course with a surprising breadth and depth of applications, An Introduction to Formal Logic will appeal to:

critical thinkers who aspire to make better decisions, whether as doctors, lawyers, investors, managers, or others faced with the task of weighing conflicting options

lovers of intellectual history, who wish to trace one of the most influential and underappreciated currents of thought from antiquity to the present day

students of philosophy, for whom logic is the gold standard for evaluating philosophical arguments and a required course for mastery of the discipline

students of mathematics, who want to understand the foundations of their field and glimpse the machinery that drives every mathematical equation ever written

anyone curious about how computers work, for programs know nothing about words, sentences, or even numbers—they only comprehend logic

those fascinated with language, the brain, and other topics in cognitive science, since logic models grammar, meaning, and thought better than any other tool

Logic Is Your Ally

Professor Gimbel begins by noting that humans are wired to accept false beliefs. For example, we have a strong compulsion to change our view to match the opinion of a group, particularly if we are the lone holdout—even if we feel certain that we are right. From these and other cases of cognitive bias where our instincts work against sound reasoning, you begin to see how logic is a marvelous corrective that protects us from ourselves. With this intriguing start, An Introduction to Formal Logic unfolds as follows:

Logical concepts: You are introduced to deductive and inductive arguments and the criteria used to assess them—validity and well-groundedness. Then you learn that arguments have two parts: conclusions (that which is being argued for) and premises (the support given for the conclusion).

Informal logic: Often called critical thinking, this type of logical analysis looks at features other than the form of an argument—hence “informal.” Here, you focus on establishing the truth of the premises, as well as spotting standard rhetorical tricks and logical fallacies.

Inductive reasoning: Next you learn to assess the validity of an argument using induction, which examines different cases and then forms a general conclusion. Inductive arguments are typical of science, taking what we already know and giving us logical permission to believe something new.

Formal symbolic deductive logic: Known as “formal” logic because it focuses on the form of arguments, this family of techniques uses symbolic language to assess the validity of a wide range of deductive arguments, which infer particulars from general laws or principles.

Modal logic: After an intensive exploration of formal logic, you venture into modal logic, learning to handle sentences that deal with possibility and necessity—called modalities. Modal logic has been very influential in the philosophy of ethics.

Current advances: You close the course by looking at recent developments, such as three-valued logical systems and fuzzy logic, which extend our ability to reason by denying what seems to be the basis of all logic—that sentences must be either true or false.

Learn the Language of Logic

For many people, one of the most daunting aspects of formal logic is its use of symbols. You may have seen logical arguments expressed with these arrows, v’s, backwards E’s, upside down A’s, and other inscrutable signs, which can seem as bewildering as higher math or an ancient language. But An Introduction to Formal Logic shows that the symbols convey simple ideas compactly and become second nature with use. In case after case, Professor Gimbel explains how to analyze an ambiguous sentence in English into its component propositions, expressed in symbols. This makes what is being asserted transparently clear.

Consider these two sentences: (1) “A dog is a man’s best friend.” (2) “A dog is in the front yard.” Initially, they look very similar. Both say “A dog is x” and seem to differ only in the property ascribed to the dog. However, the noun phrase “a dog” means two completely different things in these two cases. In the first, it means dogs in general. In the second, it denotes a specific dog. These contrasting ideas are symbolized like so:

1. "x(Dx→Bx)

2. $x(Dx&Fx)

You will discover that many consequential arguments in daily life hinge on a similar ambiguity, which dissolves away when translated into the clear language of logic.

Professor Gimbel notes that logical thinking is like riding a bicycle; it takes skill and practice, and once you learn you can really go places! Logic is the key to philosophy, mathematics, and science. Without it, there would be no electronic computers or data processing. In social science, it identifies patterns of behavior and uncovers societal blind spots—assumptions we all make that are completely false. Logic can help you win an argument, run a meeting, draft a contract, raise a child, be a juror, or buy a shirt and keep from losing it at a casino. Logic says that you should take this course.

声明:站内资源由各地网络自动搜集、整理、发布而来,仅供学习和研究使用,版权和著作权归原作者所有,禁止用于商业用途,所有下载内容请在24小时内删除,否则后果自负!

本站仅做资源搬运,下载前请仔细看清资源内容。本站不对压缩包内文件的有效性负责,不对安装、使用、编辑、阅读等任何形式进行解答,不接受任何对于此资源的质询。

资源站哪里都有,不满意请出门左转,别处下载。

提取码|Extracted-code:A461

解压密码|Password:获取方式如下

直接积分兑换解压密码
使用 250 积分兑换解压密码 | Exchange the password with 250 points.

登录可见积分

现在捐赠VIP立即送最高1000积分! 注册会员专属急速下载模式,网速有多快,下载就有多快!

想要免积分查看解压密码?请捐赠VIP会员计划 | Donate Us! ,VIP会员将获得更加优质的用户体验!

直接扫码兑换积分

请加群或关注公众号留言用户名

请加群或关注公众号留言用户名

赠送350积分

请加群或关注公众号留言用户名

赠送350积分

请加群或关注公众号留言用户名

分享 | Share

标签 | Tag

评论

和我们一起感受全球0day的脉搏

今日资源统计
869
个资源被探寻到
3
个已上传至百度云
3
个已分享
本周资源统计
2814
个资源被探寻到
42
个已上传至百度云
42
个已分享
本月资源统计
58492
个资源被探寻到
744
个已上传至百度云
742
个已分享
真遗憾!

因为流量、带宽的短缺及存储空间的限制,本月尚有 98.7% 的0day资源无法与大家见面!

捐赠VIP会员计划 | Donate Us! ,这将有利于进一步扩展本站流量、带宽及存储空间!

2015-2017 0dayku.com | 站点地图 | DMCA | VIP |